


On t h e  Davidon-Fletcher-Powell Method f o r  
- -  1 

Function Minimization 
2 

R. P. Tewarson 

. - .. 

Abstract. A method for improving the computations i n  the  Davidon- 

Fletcher-Powell method f o r  function minimization is  suggested. 

- izes the  doubly relaxed generalized inverse o f  t h e  matrix which is  usual- 

It u t i l -  

l y  obtained from the gradient vectors. The method consis& of simple 6er- 
turbations i n  the s c a l a r  terms of t h e  correction matrix. 

1. Introduction 
. *  

The Davidon-Fletcher-Powell (DFP) method (Refs. 1, 2) f o r  function 

minimization is one of the most popular methods. However, it has been ob- 

served t h a t  t he  DW method does n o t  always proceed smoothly. 

Broyden (Ref. 3) remasked t h a t  occasionally nsgatLve s teps  had t o  be taken. 

For exanple: 

McCodck (Ref. 4) observed t h z t  per iodic  r e i n i t i a l i z a t i o n  of t he  matrix 

lead  t o  s i g n i f i c a n t  improvement. 

convergence t o  non-stationary points had taken place. 

Wolfe (Ref. 5 )  has reported cases where 

Bard (Ref. 6) had 

encountered similar behavior which, he observed, w a s  invar iably the r e s u l t  

of t h e  matrix turning singular.  

I n  t h i s  paper we s h a l l  make use of the generalized inverses t o  give a 

technique f o r  improving the DFP method: I n  Section 2 we w i l l  introduce the  

doubly relaxed W-generalized inverse,where W i s  a pos i t ive  d e f i n i t e  matrix. 
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In Section 3 ,  we w i l l  describe a modification i n  t h e  DFP method and prove 

t h a t  t he  associated matrices are  pos i t ive  def in i te .  

2. The doubly relaxed W-generalized inverse 

Let B be an m x n m a t r i x  of rank r ( r  I; m I; n ) .  If X is  ana t r ix  sat- 

i s fy ing  each of t h e  equations 

B X B = B, (2.1) 
T 

(where T denotes t h e  transpose), then X i s  unique and i s  ca l l ed  the  general- 

i zed  inverse of  B, via., X = B , (Ref. 7) e 

X B X = X, (BX) = BX and (XB)* = XB, 
4 .  

+ e 

If 

A = B B ~  + e h, (2.2) 

where Im is the  i d e n t i t y  matrix of  order m and c i s  a small pos i t ive  number, 

then B(e)+, t he  doubly relaxed generalized inverse of B', i s  defined by 

Rutishauser TRef. 8) as 

B(€)+ = B ~ ( A  + A-I)-: (2.3) 

L e t  D = (%] be a non-singular diagonal matrix of order r with s+ > 0 as i t s  

i t h  diagonal element, then we have 

Lema 2.1. 

l i m D ( @  + E: I r + c (D2 + E: I,)-' )" = D" . 
G O  

Proof. Since D = {di], di > 0, we have 

The following Theorem shows the  re la t ion  between B' and B(E)+. 

-. . r  Theorem 2.1 (Rutishauser, Ref. 8) .  
+ 

B = l h  B(c)+* 
P O .  

(2.4) 



We give a proof o f t h e  above theorem since,  i n  Ref. 8 it is  omitted. 

Proof. There exist matrices Q and S such t h a t  (Ref. 9 ,  p. 10) 

QTQ = Q Q ~  = , sTs = ssT = (2.6) 

and 

QBS = 3 I (2.7) 

where D is a non-singular, diagonal matrix of rank r. The diagonal elements 

of  D a r e  g rea t e r  than zero and a r e  the  non-zero singular values of B. I n  

B = Q T E  !ST 

L 
From (2 .9 )  it f o l l o w s  that 

C 
0 ]a 

(1 + 

and from (2.31, (2.8) and Lemma 2.1, we have 

3. 



the l a s t  equal i ty  follows from d i r ec t  subs t i tu t ion  i n  (2.1) and using (2.8) 

and (2.6) (Ref. 10). This completes the proof of the theorem. 

Rutishauser (Ref. 8) has shown theore t ica l ly  and a l s o  by one numerical 

example t h a t  the  doubly relaxed generalized inverse B(e)+ l eads  t o  b e t t e r  

r e su l t s  on a computer than the d i r ec t  computation of B+, i f  the non-singular 

p a r t  of B is, i l l-conditioned. In order t o  make use o f t h e  above f a c t  i n  the 

DFP method, we will need the  following. 
* 

Since W is a posi t ive de f in i t e  m a t r i x ,  there ex i s t s  a non-singular low- 

e r  triangular matrix R, such t h a t  

RRT = w. (2.10) 

T h i s  is  known as the Choleskey decomposition of W (Ref. 11, p. 229). 

be an m x n matrix of  rank r, such t h a t  

Let  A 
0 

B = A R .  (2.11) 

Then the unique solution X of the equations 

AXA = A, XAX = X, (AX)T = AX and (XAW)T = XAW, (2.12) 

is ca l led  the W-generalized inverse of A and is  denoted by A+w. 

t ion of A 

This def ini-  
+ 

was given by Herring (Ref. 1 2 )  i n  a s l i g h t l y  more general form. 

For our pusposes the above def ini t ion will suff ice .  

defined by 

Let the W1 norm of X be 

(2.13) T lldl = t race  x W’X, 
W-l 

then Herring (Ref. 1 2 )  has proved the following th3orem. 

Theorem 2.2 (Herring). If F is a matrix with ~il rows, then 

x = A+$ (2.14) 

is the l e a s t  squares solution of the  matrix equation 

A X = F .  ( 2 J 9  
- having the minimum W1 norm. 

-. 4. 



We wi l l  a l so  need the following 
+ 

Theorem 2,3, If A+W and B are 

apectively, then 
+ 

A+w = RI3 . 

the0 r e m .  

the so lu t ions  of  (2.12) and (2.1) re- 

(2.16) 

Proof. By d i r e c t  subs t i t u t ion  i n  (2.1) and using (2.8) and (2.6), it i s  

easy t o  ver i fy  that (Ref. 10) 

Q- 
i 

Also, f r o m  (2.11) and (2.8), it follows t h a t  

+ 
I n  view of ('i.17)9 (2.18), (2.6) and (2.10), it is  easy t o  check that RB 

s a t i s f i e s  (2.12) and therefore  (2.16) holds. 
+ 

We conclude this sect ion with the def in i t ion  of A ( € )  as follows. 

A ( s ) +  = RB(E)+ , (2.19) 

which, i n  view of  (2.3), (2.11), (2.10) and (2.2), implies t h a t  
W 

where 

(2.21) 

3. A Modification i n  the DFP Method. 

Let us consider the problem of f ind ing  the n element column vector  x 

that  minimizes the quadrat ic  function 

f(x) = % xTGx + bTx + e, (3.1) 

where G i s  a pos i t i ve  d e f i n i t e  matrix, b is  an n element column vector  and c 

a constant (Ref. 13, Chap. 3 afld Ref. 14) e 

C. 



Let the ith approximation t o  the  vector  which minimizes (3.1) be denoted 

by xis Then i n  (3.1)$ the  gradient  of f(x) a t  xi is given by 

gi = Gx; + b, (3.2) 

which implies that 

= G ( x ~ + ~  - xi) 6 gi+l  - g i  

If we l e t  

then (3.3) can be written a s  
T T 

v = G si =‘yi 3 G. 
i “i 

Let 

(3-3) 

(3.5) 

Pearson ( R e f .  14) gives the  following a lgor i thn  f o r  t h e  minimization o f  (3.1). 

L e t  P be a pos i t ive  definite matrix. Algorithm 3.1. 

Solve f o r  €$, t h e  equation 

Given xo and Ho = P. 

Pi Hi = Si (3  7) 

and determine x from the r e l a t i a n  
i+l 

f(xi+z) = min f (xi  + aiHigi) . 
ai 



It i s  proved i n  Ref .  14, t h a t  the  above algorithm terminates f o r  

i n, i f  the  solut ion of  (3.7) i s  taken as 

(3.10) 

Davidon-Fle tcher-Powell method, 

We are noq i n  a posi t ion t o  describe a modification t o  the  DFP method. 

To t h i s  end, l e t  * 

H = H  + G i .  
i+l i (3.11) 

In  view of (3.9), (3.111, (3.8) and (3 .7) ,  we have 

(3.12) 

Let 

then from (3.12). it follows t h a t  
- ci = Ci - . 'i 

Also9 i n  view of Theorem 2.2, (3.13) iinplies t h a t  

(3.13) 

are the  least squares so lu t ions  o f  t he  two equations i n  (3.13) with the mini- 

mum W-1 and +'noms respect ively,  We w i l l  need t h e  following theorem, 

C .  7. 



+ 
(€1 and Y ( e )+ i j  respectively and 

‘i+l I i+l 

T A T  
yiWYi = 0 and y.WY, = 0 , 

1 - ’  

then 

where 

Proof. From (2.20), (2.21), (3.8) and (3.16), we have 

Y (E)+W = WT ( A  + f: A-’ )-’, 
i+l i + l  i+l i+l 

a d  using (3.18), we ge t  

J 

(3.16) 

(3.18) 

T where Ai = P.Wi + c Ii Now, i n  viek of (3.8), equations (3.19) and (3.20) 1 

1 -I -1 
0 

= W(Yi,YI> 
,[‘4‘.“1) 0 

(a + 8 a-1)-1 

-1 

8. 



Now, from 

Replacing 

completes 

the  hypothesis of theorem9(3.1f;) and (3.21), it follows t h a t  

A * 
W by W i n  (3.21), we g e t  the  value of  C given by (3.17). This 

the  proof of  t he  theorem. 

The following co ro l l a ry  t o  the  above theorem gives the  desired re- 

s i r e d  r e su l t .  
4 A 

Corollary 3.1. If, i n  Theorem 3.1, W = G-’ and W = 5, then 

T A 

‘Proof: Since, i n  view of  ( 3 . 9 ,  = G - I T =  yi si, T and I@:*= Hiyi; equa- 

t ion  (3.22) follows from (3.17), [3.18), (3.14) and (3.11). 
A A 

It is  easy t o  see  t h a t  (3.16) i s  s a t i s f i e d  ;if W =  G-’ and W = Hi,be=me in 

T . Therefore, T T T VieWaf (3.9 and (3.71, we have y. G-’Yi = siGSi and y4HiYi .I- = s GS 

i n  t h i s  case (3.16) implies t h a t  si@: = 0, j < i, which is  known t o  be satis- 

f i ed  (Ref. 13, Chap. 3) .  

The choice of 

1 

n 

f o r  W i n  Corollary 3 .1 is  j u s t i f i e d  provided t h a t  Hi 

given by (3.22) is pos i t i ve  def in i te .  It is easy t o  see  t h a t  f o r  E: = 0, 

equation (3.22) i s  the  usua l  updating formula f o r  the DFP method and H i  i s  

known t o  be pos i t i ve  d e f i n i t e  (Ref. 13, Chap. 3) .  For E: > 0, we have 

Theorem 3.3. If Ho = P, then the  Hi given by (3.22) a r e  pos i t ive  def i -  

n i t e  f o r  all i, 

Proof. Since Ho = P i s  pos i t ive  def in i te ,  we wi l l  show t h a t  whenever 

Hi is pos i t ive  d e f i n i t e  H 

theorem is proved. 

i s  a l so  pos i t ive  de f in i t e ;  then by induction the 
i+1 

L e t  Q be pos i t i ve  def in i te ,  then 

-. 9 .  



. . . .  
. . ,  
. .  

By the Cauchy-Schwartz inequal i ty  f o r  an a rb i t r a ry  n dimensional row vector  

T u with u u # 0, we have 

. _  . which implies t h a t  

But, from (3.22) and (3.23) it follows t h a t  0 

> 0, if yi8; + 6 > 0 
-s 

Since E: > 0 and i n  view of (3 .5)  and the f a c t  t h a t  G is  posi t ive de f in i t e  

= s GsT > 0; therefore y.sT + > 0, and thus we 'have proved t h a t  i f  
T 

yisi i i l i  

Hi i s  posi t ive def ini te ,  then H 

p le tes  t he  proof of the theorem. 

i s  also pos i t ive  de f in i t e  and t h i s  corn- 
i+1 

10 e 



4 Concluding Remarks. 

I n  t h i s  paper we have given a technique (3.22) for improving the 

I n  the der ivat ion of computation of the  Hi matrix i n  the  DFP method. 

(3.22), we made use of the doubly relaxed W-generalized inverse Yi+l ( c ) ,  

Since R is a non-singular matrix from Re2 8, (2.16) and (2.19)' it follows 

+ 

+ . t ha t ,  i n  general, Yiil ( G ) ~  will give b e t t e r  r e s u l t s  than );. This 
6 

is especial ly  t rue ,  i f  due t o  round-off e r r o r s  etc. ,  the  rows of Yi* 

a r e  not  l i n e a r l y  independent (Ref. 6) Rutishauser (Ref. 8) observes 

t h a t  the choice lo-' S e 4 lo-'' l ead  t o  good r e s u l t s  i n  a computer 

with 35 b i t  mantissa when he compu.oed the boubly relaxed generalized 

inverse. The proper value f o r  e w i l l  have t o  be determined on the bas i s  
.- 

of l a rge  sca l e  numerical experimentation. 

We can a l s o  use the doubly relaxed W-generalized inverse i n  the 

per iodic  computation of H 

per iodic  d i r e c t  computation of H improves the performance of  the UT 

method (Ref. 4). Thus i n  (3.10), replacing (Y.)' and ( Y  ) A  by Yi(~)W 

and Yi(e) i  respect ively and i n  view o f  the f a c t  t h a t  W = G-l and W = P 

f o r  the DF'P method, we g e t  

d i r ec t ly  from (3.13) It is known t h a t  such i 

i 
+ f 

i w  A 
1 W  

where, i n  view of (3.19) and (3.5),  we have 

T 
A i - S - Y  + e 1  

X i  i '  

(3.24) 

-1 



and 

( 3- 28) T A 

Ai = Yi P Yi + e Ii . 
Note that (3.24) can be computed even i f  Y 

which would not  be possible  i n  Ref, 14. 

s u l t s  i n  Ref. 8, equations (3.24)-(3.28) should i n  general, lead t o  

b e t t e r  Hi. 

does not have f u l l  row rank, 
i 

I n  view of the theo re t i ca l  re- 

L 

We conclude t h i s  paper with the following remarks on Hi which is  

given by (3.22). The for the IlFp method i s  

Hi YT Si Hi T T  

T 
i i  

T 
i i  Ify s i s  small then evidently - si si dominates t h i s  leads 

,-y s 

T 
i 

t o  inaccuracy i n  Hi+l (Ref. 6). Let yi s = o(e)  = 3 e, where X is  a 

constant, then I 

T 

c30 T .  
'i 'i l i m  - = o) . 

. ;rJi 

On the other hand 

T 
The perturbation i n  y H. y e  can be similarly j u s t i f i e d .  

i l l  
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